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Convection in a fluid with two phases 
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The gravitational instability of a horizontal fluid layer with a univariant phase 
transition is considered. It is found that the layer can be unstable even when the 
less dense phase lies above the dense phase and can be stable in the opposite case. 
Applications of the theory to convection with phase transitions in astrophysical 
and geophysical problems are briefly discussed. 

1. Introduction 
Convection in planetary interiors and atmospheres, and in stars, frequently 

involves phase transitions in the convecting medium. Often the latent heat 
liberated by a phase transition acts as the principal driving force for the con- 
vective motions. In  other cases the co-existence of two phases may have a strongly 
stabilizing influence. Since phase transitions interact in a number of ways with 
convective motions, heuristic discussions (Vening Meinesz 1962; Knopoff 1964; 
Verhoogen 1965) of these interactions have sometimes led to controversial 
results. Thus it is desirable to have a mathematical analysis of the problem 
which takes into account the influences of density change and latent heat release 
on the dynamics as well as the dependence of the position of the phase boundary 
on the convective temperature and pressure fields. The present paper intends to 
provide a simple mathematical model which exhibits the characteristic features 
of convection in a fluid with phase transitions. 

Idealized models have played an important role in the understanding of 
convective processes since Lord Rayleigh (1 916) first gave a theoretical treatment 
of the problem of convection in a layer of fluid heated from below. Lord Rayleigh 
used the Boussinesq approximation and assumed a uniform temperature 
gradient and stress-free boundaries of infinite thermal conductivity. Models 
such as this will be modified in the present investigation by the addition of terms 
in the basic equations which describe the processes occurring at  the interface 
between the two phases of the fluid. A 8-function representation of these terms 
permits a simple analytical treatment of the problem. Throughout the paper we 
restrict the analysis to linear equations, regarding the convective motions as 
small non-oscillatory disturbances of the basic state. In  special cases it can be 
proved that growing oscillatory disturbances cannot exist. In general we shall 
assume the validity of the principle of exchange of stabilities without proof. In 
most cases the physically realized instability of the static state will set in as 
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finite amplitude convection at  values of the Rayleigh number below the critical 
value given by linear theory. Even in these cases, however, the linear equations 
provide a reasonable approximate description of the instability. We shall return 
to this point in the discussion at  the end of the paper. 

After deriving the basic equations in $2, the simplest case of convection 
involving a phase transition will be considered in $ 3. In  this case the coefficient of 
thermal expansion is neglected and an adiabatic temperature gradient is assumed 
for the basic state. The static state is unstable only when the dense phase lies 
above the lighter one. In  the case of two immiscible fluids the Rayleigh-Taylor 
instability cannot be prevented by viscous dissipation. However, when the 
boundary separates two phases of the same fluid, dissipation can play a stabilizing 
role. A case of particular interest is considered in 9 4 in which the effect of thermal 
expansion is still neglected but the static temperature gradient i s  no longer 
assumed to be adiabatic. Although the static state of a single-phase fluid is 
stable in this case, a two-phase fluid with the heavy phase below the light one may 
be unstable. The complementary case of a non-vanishing coefficient of expansion 
in the presence of an adiabatic temperature gradient is discussed in 95. Some 
properties of the general case are studied in 5 6. The fact that convective motions 
due to thermal expansion may or may not be influenced by a phase transition 
leads to the interesting phenomenon that the fluid layer may become unstable to 
convective modes of quite different scale at the same critical temperature 
gradient. 

2. Basic equations 
We consider a horizontal fluid layer of thickness d. The temperatures at the 

lower and upper boundaries are held at  the constant values TI and T,, respectively. 
The fluid consists of two phases which coexist at values of the pressure p and the 
temperature T satisfying the relation 

f ( P ,  T) = 0- (2.1) 

It is assumed that the fluid is homogeneous in the horizontal directions. Accor- 
dingly a static state of the fluid layer exists with a horizontal univariant phase 
boundary separating the two phases. The slope of the curve described by (2.1) is 
determined by the Clausius-Clapeyron relation 

where p1 and p, are the densities of the two phases, Ap is the density change in the 
transition from the less dense t o  the denser phase and q denotes the latent heat 
per unit mass released in this transition. We assume that the variation of density 
throughout the fluid including the change Ap at the phase boundary is small 
compared with the mean density po. According to Le Chatellier’s principle the 
denser phase corresponds to a higher pressure at constant temperature. Phase 
transitions are characterized in general by a positive function (dT /dp)c .  Ex- 
cluding some rather exceptional cases we shall therefore assume that q > 0 in the 
following. 
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In  order to separate the changes taking place in the phase transition from the 
changes taking place without transition the specific heat at  constant pressure 
cp and the expansion coefficient are written in the form 

I 

where S(f) denotes the Dirac &function. The dependence of density on pressure is 
given by 

(2.4) 

The function f ( p ,  T )  has been chosen in such a way that it is positive for the light 
phase and negative for the dense phase. For simplicity we shall assume that c and 
a have the same constant value for each of the two phases. Similarly it will be 
assumed that the thermal diffusivity K and the kinematic viscosity v are constant 
throughout the fluid layer. The temperature dependence of the density will be 
taken into account in the gravitational body force term only. The dependence of 
density on pressure has been neglected entirely within each of the two phases. 
On the other hand, the pressure term in the energy equation will be retained in 
analogy to Jeffreys' (1930) formulation of the Boussinesq approximation for 
convection in compressible media. For details on the Boussinesq approximation 
we refer to Spiegel & Veronis (1960). 

In order to obtain a dimensionless description of the problem we shall use d, 
d 2 / K ,  andqlc as scalesfor length, time and temperature, respectively. The equations 
of motion for the dimensionless velocity vector u and the energy equation for the 
dimensionless temperature 0 are 

--u K D  = -Vn-----k+V'u, P gd3 V . U  = 0, 
v Dt Po V K  

where k is the unit vector in the direction opposite to the force of gravity and IT is 
the dimensionless pressure pd2/VKpo. Viscous dissipation has been neglected in 
the energy eq.uation. It is assumed that an instantaneous thermodynamic 
equilibrium takes place on the time scale d 2 / K .  The dimensionless form of the 
Clausius-Clapeyron equation is 

Equations (2.4) admit the static solution 
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A Cartesian co-ordinate system has been introduced with the x co-ordinate in the 
direction of the unit vector k in such a way that 

f(IIo7o0) = 0 at z = 0. (2.8) 

The lower and upper boundaries are given accordingly by z = x1 and x = z2, 
respectively, with z2 - x1 = 1 and x2zl < 0. 

To analyse the stability of the static solution we consider disturbances u, 8, rr of 
infinitesimal amplitude superimposed on the static solution. The equations for 
the perturbations are 

v.u = 0, (2.10) 

s 1 2 6 ( x ) - ~ + ~  do aT wcdl l ,  -) +V28, (2.11) 
dx qd2 dx 

where 

(2.12) 

i.e. s12 is positive if heavy material lies above light material and negative if the 
light phase is on top. Here, and in the following, f is considered a function of 
no, 0, unless indicated otherwise. The subscript 0 at a bracket refers to z = 0. 

The term s12u. kJ(z), on the right-hand side of the energy equation, represents 
the contribution of the latent heat of transformation to the change in enthalpy 
of a fluid particle undergoing the phase transition. It arises in the following 
manner. From equation (2.5) we see that 

ao, dx qd2p, dz (2.13) 

Using the relation G((df/dz),x) = I(df/dz)ol-16(z) and equation (2.6) the above 
expression may be written 

We note from (2.1) and (2.6) that 

which, together with the fact that (af/ao,), (dII , /dz) ,  is a negative quantity, 
establishes relation (2.12). 

According to the horizontal momentum balance n is of the order of I V x u I and 
it can therefore be neglected inside the wavy bracket of (2.9) where it is multiplied 
by the small quantity Ap/po ,  i.e. we neglect the force arising from the distortion 
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of the interface due to the change in pressure rr. We shall neglect the time deriv- 
ative of rr in (2.9) as well by assuming that the factor multiplying this term is 
sufficiently small. 

With the aid of (2.13) and the definitions 

equations (2.9)-(2.11) take the simpler forms 

(KIv) au/at = - Vn + k(R, + P ~ ( z ) )  8 + V'U, (2.15) 

v.u = 0, (2.16) 

(1  + Q+)) aept = u . k(s l ,qz)  + R ~ )  + ve .  (2.17) 

The parameter R, is the Rayleigh number as in ordinary BBnard convection 
except that q/c replaces the temperature difference Tl - T, between the boun- 
daries. Rp represents the difference between the actual temperature gradient and 
the adiabatic lapse rate. 

From the relation f ( r I o + r r 7  a,+ 8 )  = 0 we obtain for the distortion of the 
interface between the two phases 

(2.18) 

Since the dependence on n can be neglected in comparison t o  the dependence on 8 
in accordance with earlier assumptions, expression (2.18) can be simplified to 

(2.19) 

Thus depending on whether the actual ratio between temperature and pressure 
gradient is less or larger than the right-hand side of (2.2) the distortion of the 
interface has the same or the opposite sign as the temperature disturbance 8. 

To eliminate the equation of continuity (2.16) we introduce in place of u the 
general representation of a solenoidal vector field 

u = V x (V x (kv)) + V  x (kw). (2.20) 

The equation for w derived from (2.15) is 

K a  
--A,w = V2A2w, 
v at 

(2.21) 

where the operator A, is 
A, = V2-(k .V)2 .  
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Since (2.21) admits only decaying solutions for homogeneous boundary con- 
ditions, w can be neglected in the stability analysis. Two equations for u and e can 
be derived from (2.15) and (2.17), 

(2.22) 

These equations will be considered in the following sections together with two 
kinds of boundary conditions. In general we shall assume ‘free’ boundaries a t  
which the normal component of the velocity and the viscous stress vanish, 

u = a2u /aZ2  = e = o at z = zl, z2. (2.23) 

The results derived for ‘free ’ boundaries differ usually only quantitatively 
from the results for rigid boundaries at which the total velocity vector vanishes, 

u = avpz = 8 = 0 at z = xl, z2. (2.24) 

For this reason ‘rigid’ boundaries will be considered only in qualitative dis- 
cussions of the problem. 

3. The case R, E R, FZ 0 
We consider the case when the temperature gradient is nearly equal to the 

adiabatic lapse rate, Rp E 0. The parameter R, is the product of the magnitude of 
the adiabatic temperature gradient and the quantity qd3/To V K .  Thus indepen- 
dently of the actual ma,gnitude of the adiabatic lapse rate we can choose 
R, < 1 by considering q d 3 / T O v ~  < 1. Consequently we first treat the simplest 
case R, E 0 and RB E 0. Since the time dependence of v, 8 can be assumed in the 
form exp (at), the equations (2.22) can be written 

I v 4 U  - P8(Z) 6 = ( K / V )  d 2 U ,  

V20-s12S(z)A2u = d ( l + & S ( z ) ) .  

The operator on the left-hand side of this system of equations is self-adjoint if 
boundary conditions of the form (2.23), (2.24) are assumed. Consequently the 
growth rate a of the unstable modes is real. To show this we multiply the first 
equation in (3.1) by A2u*, the second by PO” (the asterisk denotes the complex 
conjugate), average the equations and add to obtain 

- (I k x VV2ul 2 ,  - P( IVB12) - P(8(x) (8A2u* + Slze*A2v)) 

= a[(+)(lk x ~ v ~ 1 2 ) + ~ ( 1 8 1 2 + & 1 e ~ = ~ 1 2 ) 1 .  (3.2) 

Since P and Q are positive, all disturbances must decay in time if sI2 = - 1. 
Hence in the following, our attention will be restricted to the case s12 = + 1.  In this 
case only real values of a are admissible and the stability of the static state will be 
determined by disturbances with a = 0. The general solution of (3.1) for dis- 
turbances of this kind with the boundary conditions (2.23) is 

= A X ,  Y) qz), O = f(X, Y) q 4 ,  (3.3) 
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where y = 1 for x < 0 and y = 2 for z > 0. The function f(x, y) satisfies 

and vy, 8, are given by 
A, f = - uY, 

807 

vy = A,sinha(x-z,) +By(x-zy) cosha(z-z,), 

8,, = C,sinha(x-z,,). 

The coefficients A,, By, Cy are determined by the following equations derived 
from (3.1) : 

I 2 
Z; (A,sinhalz,l +Bylzylcoshalzyl) = 0,  

y = l  

2 
(A,acoshalz,l +By(alxyIsinhalzyI +coshalz,l)) = 0, 

y = l  

2 
C B,asinhaIz,,l = 0, 

y = l  

2 

5 Cysinhalxyl = 0, 
y = l  

} (3.4) 

J B,u2coshax,-B2a~coshaz, = - &PC,acoshax,, 

Cla cosh ax, - C2a cosh az, = a2(A, sinh az, + B,x, cosh ax,). 

The system (3.4) is solvable when the coefficient determinant of the unknowns 
A,, By, C,, vanishes. This condition yields the characteristic equation 

0 = 2a2(cosh ax, + [sinh alzll /sinh az,] cosh a@ 
+ Psinhalz,l{a( lzll +z2[sinh2az,/sinh2az,]) 

- sinhalx,J(coshaz,+ [sinhalz,J/ainhaz,] coshaz,)). (3.5) 

r 

01 I I I I I I I I I 
0 1 2 3 4 5 6 7 8 9  

a 
FIGURE 1. The curve of marginal stability, P WUB. a, for the case (zll = lzzl,  

R, = R - 0, aI2 = 1. 8 -  
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It is of interest to evaluate (3.5) in the limits a tending to infinity and to zero, 
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a+ co, P --f 8a2, (3.6) 

a+O, P+3/a21z1z213. (3.7) 

For a+co, P becomes independent of the location of the boundaries. The lowest 
value of P is attained in the symmetric case lzll = lz21, for which the numerical 
evaluation of (3.5) yields the results shown in figure 1. The critical value of P a t  
which the layer becomes unstable is 118.2 corresponding to a = 2.4. 

The physical interpretation of these results is that a static state in which the 
denser phase lies above the lighter phase can be stable if viscous and thermal 
dissipation are sufficiently strong to overcome the destabilizing force of gravity 
by keeping P below its critical value. This result contrasts with that in the case of 
two immiscible fluids where dissipation cannot prevent the Rayleigh-Taylor 
instability. 

4. The case R, M 0, R, .I. 0 
When the assumption Rp z 0 is dropped the boundary-value problem is no 

longer self-adjoint. However, we shall still restrict our attention to disturbances 
with (T = 0 and consider the equations 

-I v4v - Pd(2) 8 = 0, 

V28 - (R, + s12d(2)) A2v = 0.J 

As in the preceding section the solution can be written in the form (3.3) with 
v,, 0, defined by 

vy = A,sinhu(z-z,) +B,(z-z,) cosha(z-z,), 

8 Y = - gaR,[(x-x,)A,cosha(z-z,) ++B,{(z-z,)2sinha(z-z,) 

- ( l /u)  (z-z,) cosha(z-z,))+Cysinha(z-zy)]. 

The equations for the coefficients A,, By, C, lead to a characteristic equation in 
analogy to (3.5). In the symmetric case lzll = lzzl = &, the cquation is 

as 
(sa3/npP) C O S ~ ~  - 2 sinh ;a (sinh :a cosh $a - &a) + $a2 sinh ;a 

R, 
+ ga cosh $a - 3 Gosh2 +a sinh ga = 0. (4.2) 

I n  the limit a-> co (4.2) yields 

Rp = (26a3/3P) - (2a/3)s12, 

Rp = 480/Pa2 - +sl2. 
while for a --f 0 we obtain 

The characteristic equation (4.2) is of particular interest in the case sI2 = - 1, i.e. 
when the light phase lies above the heavy phase. Although this density stratifica- 
tion appears to be stable, it may in fact become unstable if a sufficiently large 
temperature difference is applied at  the boundaries. The parameter Rp must 
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exceed a positive value, depending on a,  in order to overcome the stabilizing 
effect of the negative sI2. The minimum value ofRF required for instability is given 
b s  

3 cosh +a 1 - 4. 
2a sinh $a cosh $a sinh $a - &a 

Rpnt = min (4.5) 

corresponding to a = 0. The marginal stability curves RF vs. a for various values 
of P are given in figure 2 .  

103  

1 0 2  

1 I I 
10-1 1 10 102 

a 

FIGURE 2 .  The marginal stability curves, Rg 'us. a, for several values of P ,  for the case 
lzll = 1 ~ ~ 1 ,  R, = 0, sI2 = - 1 .  

1 '  

The instability is at  first sight surprising since a flow conserving the thermo- 
dynamic state of the material would cause a stabilizing distortion of the inter- 
face between the phases. According to the energy equation, however, the thermo- 
dynamic state of the advected material is not conserved. Hence, depending on the 
advected temperature field, a distortion of the interface in the direction opposite 
to the flow becomes possible. This behaviour of the interface provides the key to 
understanding the instability mechanism. Where the flow is downward, for 
example, the phase boundary is distorted upward and a vertical column of fluid is 
heavier than an unperturbed fluid column. Thus the gravitational body force is 
downward, aiding the motion and producing the instability. Had the interface 
distorted downward, with the flow, the perturbed vertical column would have 
been relatively lighter and the resulting upward buoyancy force would have 
promoted stability. In his discussion of the inhibiting effect of phase transitions 
on convective motions Verhoogen (1965) does not include the destabilizing effect 
of the distortion of the interface. 
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Relation (4.2) also shows that a negative value of R, has a stabilizing influence 
on the instability considered in the preceding section. However, this stabilizing 
influence becomes less significant as a -+ m as can be seen by rewriting (4.3) in the 
form 

5. The case R, M 0, R, =I 0 

mentary case R, M 0, R, + 0. Since the adjoint problem of (4.1) is given by 
The analysis of the preceding section can be readily applied to the comple- 

V4v+ - (B, + s ~ ~ S ( Z ) )  6 - 

ve+-  P S ( ~ ) A , ~ +  = 0, 

with v+, B+ satisfying the same boundary conditions as v, 6, it can be concluded 
that the dispersion relation (4.2) holds for the solution of the equations 

V4v - (22, + PS(2)) 6 = 0, 

V20 - s12S(z) A, v = 0, 

if the parameters R,, P and s12 in relation (4.2) are replaced by R,, s12 and P, 
respectively. The asymptotic relations for the boundary of marginal stability 
follow from (4.3)) (4.4) : 

(5.3) 1 P M ( 8a2/s12) - R,( 3/2a) for a+ co, 
P M (192/a2s1,)-~R, for a-+O. 

Since P and R, are restricted to positive values in general, instability can occur 
only for sI2 = 1 corresponding to the case when the dense phase is above the less 
dense one. For this reason a non-vanishing parameter R, does not introduce new 
physical aspects into the problem other than a destabilizing influence on the 
instability considered in Q 3. 

6. The general case 
In the general case, R, =+ 0, R, =i= 0, ordinary Rayleigh convection is possible 

for R,R, > 0 when the phase transition is vanishing. This has the interesting 
consequence that two different modes of convection may simultaneously be 
possible. To discuss this phenomenon we consider solutions of ( 2 . 2 2 )  in the case 
lzll = lz21. Equations (2.22) have the stationary solutions with antisymmetric 
z dependence 

(6.1) 1 v 2  = sin 2nzf2(x, y), 

6, = ( ( Z ; r r ) 2 + ~ i ) - 2 ~ 2 ,  

with A,f2 = -aifi. The motion described by (6.1) involves separate convection 
cells above and below the phase change interface. Since there is no motion through 
the phase boundary the parameters P and s12 do not influence this solution. The 
minimum value of R, R, for which a solution of the form (6.1) exists is R,, = 10871'4 
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(Chandrasekhar 1961, pp. 35-36). Ordinarily solutions with a symmetric z 
dependence correspond to much lower critical Rayleigh numbers. However, this 
need not always be the case as can readily be seen in the limit P $ R,. In  this 
case the analysis of $ 4  will be approximately valid even though R, does not 
vanish. Since P is very large the symmetric mode will become unstable with a 
small value of the horizontal wave-number a when R, just exceeds $. The anti- 
symmetric mode (6.1) with horizontal wave-number a2 = 7~ J2 will simulta- 
neously become unstable at the value R, M SR,, = 216n4/5. It is interesting to 
speculate about the non-linear interaction of these two modes. In  the present 
study, however, we shall not discuss this topic further. 

When R, and R, are large compared to P and unity, respectively, or alter- 
natively when Aplp < &IT2- TII and q < clT2- TII, the effect of the phase 
transition can be considered as a perturbation upon convection in a homogeneous 
fluid. Since the problem of convection in a homogeneous fluid is self-adjoint the 
influence of the perturbation is readily evaluated by multiplying the first and 
second of equations (2.22) by RpA2v1 and Rae,, respectively, and adding the 
averaged results. The functions vl, 8, denote the solution of the stationary 
equations without the terms multiplied by P and s12 when R, Rp has reached the 
critical value R,, = +'-n4 (Chandrasekhar 1961) of the Rayleigh number. The result 

(Rj3P+R,s,,) ( A 2 V 1 4 W )  = (-Raq9++,1) (AZVl~l), 

shows that the phase transition with negative s12 exerts a stabilizing or de- 
stabilizing influence depending on whether P is smaller or larger than R,lR,. 

7. Concluding remarks 
Linear stability analysis provides sufficient conditions for instability. Yet the 

fluid layer is not necessarily stable below the critical Rayleigh number estab- 
lished by the linear analysis. In  the case of a single-phase fluid it has been found 
that instability sets in at  subcritical Rayleigh numbers in the form of finite 
amplitude hexagonal convection when the material properties of the fluid depend 
on the temperature (see, for example, Busse 1967). A phase transition similarly 
favours instability in the form of subcritical hexagonal convection especially 
when the interface between the phases is not at  the midpoint of the layer. 
Non-linear terms caused by the finite distortion of the interface also favour 
hexagonal convection. The terms can be derived in analogy to the linear term 
taken into account in equations (2.15)-(2.17). 

The analysis described in the preceding sections pertains to a number of 
geophysical andastrophysicalconvection problems. Phase transitions with theless 
dense phase above the more dense one, as seem to occur in relatively deep layers 
of the earth's mantle, can contribute to instability by the mechanism discussed 
in $ 4 as has been pointed out by Schubert, Turcotte & Oxburgh (1970). Recently 
Press (1969) has reported the results of a Monte Carlo procedure used to find 
density distributions for the upper mantle consistent with the geophysical data. 
These results suggest that a density inversion associated with a phase change may 
occur at a depth between 200 and 300km. The analysis of 93 indicates that a 
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stationary state of convection is compatible with this situation. The phase change 
of water in clouds has a more complicated character owing to the dominant 
presence of air. An extension of the analysis of this paper may provide a quanti- 
tative model for cloud convection. Convection in the solar atmosphere is driven 
partly by the phase transition corresponding to the ionization of hydrogen. In  
this and other cases a simple model has the advantage that an analytical treat- 
ment of the non-linear effects seems feasible in analogy to the treatment of the 
case of a single-phase fluid. 
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physik, Munchen. One of us (G.S.) would like to thank the Alexander von 
Humbolt Foundation for a fellowship during this period and acknowledge partial 
support under NSF Grant GA 10963. 
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